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Abstract

We propose a variant of the Eulerian method for two-phase flow that is valid for small particle response
time 7. For small 7, the particle velocity field v(x, #) approaches a unique, equilibrium field, independent of
initial conditions. A precise inequality is derived specifying how small T must be for this to occur. When it
does, v(x,?) depends only on local fluid quantities (velocity and its spatial and temporal derivatives), and
may be expressed as an expansion in t. We derive an expansion which generalizes those of previous re-
searchers. The first-order truncation of this expansion may be computed efficiently, so by using it to ap-
proximate v, the method avoids the need to solve additional partial differential equations, and therefore is
much faster than the standard Eulerian method. Results from a direct numerical simulation of turbulent
channel flow indicate that this first-order approximation of v is sufficiently accurate. Static tests performed
at one time-instance show the actual velocities of particles evolved in a Lagrangian fashion are estimated
well by evaluating the first-order approximation of v at the particles’ positions. In particular, turbophoresis
is represented accurately. Dynamic tests examine the effect of using the first-order approximation of v to
evolve particles. The distribution of particles evolved in this way differs little from that of particles evolved
using the standard Lagrangian method, indicating that static errors do not accumulate over time. In
particular, the approximate method accurately captures preferential concentration in regions of high strain
and low vorticity. Analogous results hold for bubbles. Therefore, for sufficiently small particles of any
density, the first-order approximation to v is accurate, so the proposed variant of the Eulerian method is
both accurate and fast. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

There are a variety of techniques for the numerical simulation of two-phase flows. To highlight
the need for different techniques, let us imagine a monodisperse, particle-laden flow with density
ratio (of the dispersed to the continuous phase) of p = 10 and a volume fraction (of the dispersed
phase) of ¢ = 10~*. What simulation technique should we use in this situation? The answer de-
pends critically on the size (or, equivalently, response time 7) of the particles compared to the
characteristic time-scale of the surrounding flow. A range of techniques are shown in Fig. 1. If
particles are very small, they can be considered to move with the fluid and be spatially well mixed.
We may then treat the flow as single phase, with a modified density of 1 + (p — 1)c. For instance,
in the above example effective density will be approximately 1.1 times the fluid density. For a
larger particle diameter, the particle velocity can no longer be considered to be equal to the fluid
velocity, and ¢ begins to exhibit spatial variations. Nevertheless, the particles are still well rep-
resented by a continuum model, so one may treat the particles in an Eulerian fashion. This entails
the evolution of particle concentration field ¢(x,7) and a particle velocity field v(x, 7) along with
the fluid velocity field u(x, 7). The derivation of the evolution for ¢(x, ¢) and v(x, ¢) is complicated
by the fact that they represent an average over all possible particle velocities at (x, 7). Eight partial
differential equations (PDEs) now need to be evolved in time instead of just four for fluid velocity
and pressure. In a polydisperse system, the concentration and particle velocity fields must be
defined separately for each particle size to be considered, in which case the Eulerian approach for
particles can become quite expensive.

For particles larger still, the Eulerian method ceases to be appropriate; either because the
number density of particles is so low that the continuum model ceases to apply; or because the
inertia of the particles is too large for the particle velocity to be well represented by a unique field
v(x, 7). Fortunately, if the particles are large, then there are fewer of them for a given loading. In
this case, we may use a Lagrangian approach for the particles, in which the particles are tracked
individually. This method is typically costlier than the Eulerian method; although the actual cost
depends on the number of particles to be tracked. However, it has an advantage over the Eulerian
method in that it allows two particles with different velocities to be in the same fluid volume (and
to collide, if this is implemented). There is no averaging over all possible velocities at a point (x, ¢).
It has the disadvantage that the back-effect of the particle on the fluid is somewhat difficult to
account for. Finally, as the particle size increases further, the flow around the particle becomes
complicated, and the back-effect of the particle on the fluid becomes so important that the simple
parameterization implicit in the Lagrangian method fails. In this case, one needs to resort to a
single-phase simulation of the carrier fluid, but with the exclusion of immersed particles. The cost
of simulating the flow details around each sphere typically makes this method far more expensive
than the Lagrangian method.
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Fig. 1. Particle evolution methodologies.
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Although we observe a general trend of increased expense as particle size increases (for fixed p
and ¢), there are regimes where the trend is the reverse. The expense of the Lagrangian method
increases as the particle size decreases (since the number of particles to track increase). Thus, there
is a problem at the boundary between of Eulerian and Lagrangian methods. Here, particles are
too big to be treated in Eulerian fashion, but too numerous for Lagrangian techniques. Necessity
has produced so-called super-particle methods in which each computational particle represents
many real particles. But there is concern about the accuracy of these methods. There is also a
problem at the boundary between the Eulerian and “modified density” methods. The cost of the
Eulerian method is largely independent of particle size, but when the particles get too small, the
evolution equation for v(x, #) becomes stiff, necessitating a smaller time-step than the fluid phase
requires.

This paper examines a method for stimulating two-phase flows in the small-t portion of the
regime in which the Eulerian method applies. We pursue a suggestion originally (to our knowl-
edge) exploited by Maxey (1987): that the particle velocity field can be expressed in terms of the
fluid velocity as an expansion in particle time-scale. Such an expansion was recently considered by
Druzhinin (1995) and Druzhinin and Elghobashi (1998, 1999). The important feature of the ex-
pansion is that the particle velocity field v(x, 7) can be explicitly evaluated in terms of u(x, ¢) and its
spatial and temporal derivatives, without solving additional PDEs. Thus only one additional PDE
for the concentration field, ¢(x, ¢), need be solved for particles of certain size range. Bypassing the
need to solve an equation for v(x,#) (an equation which becomes stiff for small 1), this approach
eliminates a small time-scale from the problem. Otherwise, there is a time-step constraint of the
form At < kt for some constant k. The method is much faster than the traditional Eulerian
method and for further reference we term it the fast Fulerian method (see Fig. 2). It forms a
natural bridge between the modified density method and the traditional Eulerian method as will
be seen later in Section 4.2.

Here we extend the formal expansion (Maxey, 1987; Druzhinin, 1995) to include the effects to
added mass, Basset history, and Saffman lift forces on the particle. More importantly, we evaluate
the accuracy of the fast Eulerian approach in a turbulent channel flow by comparing the statistics
the approach yields with “exact” Lagrangian statistics. Since the Eulerian approximation is ex-
pressed as an expansion in particle time-scale, this comparison will also allow us to judge the rate
of convergence and, from a practical point of view, determine how much imporvement in pre-
diction can be achieved with the first few terms of the expansion.

The Eulerian approach certainly has limitations. For example, the motion of a baseball through
air cannot be described in terms of an expansion in the velocity of the surrounding air. The
Eulerian approximation to particle velocity is an expansion in particle time-scale. Convergence
can be expected only for small particles and bubbles with small time-scale compared to that of the
surrounding flow. The expansion is likely to diverge for particles, such as the baseball, with a
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Fig. 2. The fast Eulerian method’s niche.
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larger time-scale. Furthermore, a Eulerian velocity field for the particle assumes a unique velocity
for the particle a given x and ¢. However, the inherent Lagrangian nature of particle motion can
result in different velocities for different particles at the same x and ¢, depending on the history of
their motion. Truly, one requires a particle distribution function, f(x,v,#), in phase space to
account for the multi-valuedness of the particle velocity. In the limit of particle time constant,
7 — 0 a unique particle velocity field is appropriate. On the other hand, the initial conditions of
very large particles persist for such a long time that it is inappropriate to speak of a unique field
description for particle velocity. It is then natural to ask if there is a particle time-scale (non-
dimensionalized with respect to the surrounding flow) below which an Eulerian description with
unique particle velocity field is appropriate. Here we provide such a criterion, which is similar to
one recently obtained by Meiburg et al. (1999) for the existence of unique velocity for particles
settling in a unidirectional flow. These theoretical issues are addressed in Section 2. In Section 3
we present numerical comparison of the Lagrangian and fast Eulerian (Eulerian expansion) ap-
proaches for the case of turbulent channel flow. Finally in Section 4 we consider implications of
such an Eulerian expansion for particle distribution and for two-way coupling.

2. Theory
2.1. The particle velocity field for small ©

Mazxey (1987) and later Druzhinin (1995) considered the following equation of motion:

dv 1
— — —(u— 1

-V +e (1)
for particles subjected to only viscous drag and gravity forces. In the above equation the particle
time-scale, 7, is given by t = a*/(3fv), where B is the density ratio parameter to be defined below,
and g is acceleration due to gravity. Now if an Eulerian particle velocity field v(x, 7) is assumed,

then from the above Lagrangian equation of motion the following expansion for particle velocity
field is obtained:

Da

V:u—ar+<Dt

—l—a-Vu)r2 +0(7), (2)

where D/Dr is the total derivative following the fluid element, d/d¢ is the total derivative fol-
lowing the particle, and a is the modified acceleration, a = Du/Dr — g. Maxey (1987) used the
first-order version of this equation to explain the preferential accumulation of dense particles in
regions of low vorticity and high strain. The expansion was extended later to second-order in the
analytical work of Druzhinin (1995). Here we want to first extend this formal expansion to include
other effects, such as added-mass, Basset history and Saffman lift forces.

The Maxey-Riley equation without the Faxén correction (Maxey and Riley, 1983), using
Auton’s form for the added mass (Auton et al., 1988), plus the Saffman lift term (Saffman, 1965)
takes the following form:
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dv Du 1 /Du dv 6ra’y d'/?
mpazénau(u—v)—i—mfﬁ—i-imf YT —i—(mp—mf)g—l—TW(u—v)
Ve 5 [10r
+ —a |w’(u V) X o. (3)

The first term on the right is Stokes drag, which can be modified to include higher Reynolds
number correction if needed. The second term on the right is the fluid acceleration force, which
will be felt even in the absence of the particle. The third term is the added-mass force, the fourth is
gravity, and the fifth is the Basset history term. (Appendix A contains details on the usage of
d'/?/ds'/? in the Basset history term.) The last term on the right is the Saffman lift term; here it is
written in terms of J,, ~ 2.255 so that one may substitute some version of the function J(¢) if a
more accurate expression for lift is desired (for details see McLaughlin, 1991; Wang et al., 1997).
Here o is the vorticity of the external flow surrounding the particle.

The above general equation of particle motion can be written in a compact form by introducing
the density ratio parameter, f# = 3/(2p + 1), where p = p,/p. Then

& L p 2 e Lo, @)

where & is a linear operator defined as

d'’f 337,
= >~ f )
\/_dzl/z + N X @ (5)

We solve for v in terms of u when the particle time-scale 7 is small. Since we expect v to be equal to
u for f =1, and to differ by O(t) otherwise, we write

v=u—(1-pf)q. (6)

We may now express the time derivative following the particle in terms of the derivative following
the fluid:

Z[f]

S (—pra-v. @
Thus,
<1+m$+ri>(u—v):(1—ﬁ)r<@—g—rq-Vu>, (8)
dr Dt
and so,
-1
q= <1+\/ﬁr$+r%> (a—1q- Vu), 9)

where, as above, a = Du/Dr — g. We now invert the operator

-1
(1+\/E$+r%> _1—\/E$—z<%—ﬁgz> +0O(*), (10)
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SO
Da 2 3/2
q=a—/fr¥a—1 ﬁ+a-Vu—ﬁ$a + O(7) (11)
and finally,
v=u+(1-p) < —at+ /pLac’? + (%?—F a-Vu-— ﬁffza)rz + O(r5/2)>. (12)

The definition of % involves d'/* /dt'/?, which is a derivative following the particle. One may
replace this with D'/? /D¢!/2 in the above, absorbing the difference into the O(7%/?) term. The above
is a formal expansion for the particle velocity in terms of the fluid velocity field and is valid even
with the inclusion of added-mass, Basset history and lift forces.

With the above general formalism several appropriate limits can be taken to obtain the cor-
responding simplified form of the particle velocity field. In the limit when the external gravita-
tional force represented by g is dominant (i.e., g =~ O(u/7) , Eq. (12) can be rewritten in terms of
the terminal velocity, w = (1 — f8)gz, as

v=u+w—/pLwi? - <(1 - B)% + % +w-V(u-+w) — ﬁgzw)r + O(7%?). (13)
Since g, and hence w, is generally constant over space and time, the Basset component of #w is 0,
so the Saffman lift force is the dominant source of the relative velocity’s deviation from the

terminal velocity, and it occurs at order t'/? as follows:
3J. /3
V:u+w+ﬁ |?ﬁyrwxwﬁ—O(r). (14)

In the dense-particle limit (f — 0), the Saffman lift terms become unimportant and to O(t) one
can recover the expansion in Maxey (1987):

Du

v:u+w—<Dt

+W-VU)T+O(‘L’2). (15)
Further discussion in the paper will pertain to small particles, for which the fast Eulerian ap-
proach is applicable. Also, we shall restrict our attention to the case g ~ O(Du/D¢). For further
discussion we shall also ignore %, which means our results will hold up to O(z%?) when f = O(1)
— this step is mainly to avoid complications arising from the evaluation of Basset history term.
Hence, the equation of interest reduces to

V:u—f—(l—ﬂ)(—af—l—<%+3-VU)T2+O(T3)>. (16)
With = 0 the above is essentially the same as the equation considered by Druzhinin (1995). A
significant feature of all the above forms of the expansion is that particle velocity is simply related
to the local fluid velocity and its local spatial and temporal derivatives. Thus in any computational
procedure, once u(x, ) is evaluated, the corresponding particle velocity field can be obtained
relatively easily without solving additional PDEs. Furthermore, it is easy to obtain different
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particle velocity fields for particles of different sizes (or, in other words, for different time con-
stants 7). Of course, there are questions regarding convergence and the asymptotic nature of the
above expansion, especially as a function of increasing 7. Also the uniqueness of the above
expansion can be questioned. These issues will now be addressed.

2.2. Uniqueness of the particle velocity field

The formal manipulations of the previous section are based on the assumption that there is a
unique Eulerian field representation for the particle velocity v(x,?), given a fluid velocity field,
u(x, ). However, for any given fluid velocity u, the corresponding particle velocity is clearly de-
pendent on its initial condition. Two different particle velocity fields, v; and v,, can evolve dif-
ferently in the same fluid field u(x, ) provided they started with different initial conditions. This
dependence on initial conditions is likely to persist for at least some finite period of time.
Therefore the question of whether a unique particle velocity field can be defined needs to be
addressed only beyond an initial transient period. We can anticipate a unique particle velocity
field for sufficiently small particles, where how small the particles need to be is likely to depend on
the flow field. It can be expected that for particles whose characteristic time-scale 7 is smaller than
a certain characteristic time scale of the fluid, any two initially different particle velocity fields v,
and v, converge exponentially fast. For such particles we may speak of a single field v once the
transients arising from the initial conditions decay.

We have derived a rigorous condition for particle velocity fields to converge. Let R(¢) be a
material volume for the velocity field v,(x, 7). We define

E(t) = sup [vi(x,7) = va(x, 0)[. (17)
XER) (1)
Then E(r) < E(0)e ™™ for some k > 0 provided all eigenvalues of 1/2(Vv, + (Vv,)") over the region
swept out by R, (¢) are greater than —1 /7. Provided this condition is satisfied a unique equilibrium
particle velocity field can be assumed to exist. Any initial deviation from equilibrium will decay
exponentially, and the particle velocity will entrain to a unique velocity field. Appendix B contains
the details and proof of this convergence theorem.

The convergence of particle velocity fields should not be confused with the convergence of
individual particle paths. Suppose vi(Xx,#) and v,(X, %) differ slightly, and —1 < a,7 (0, is the
maximal compressional strain of the flow: maximal over the entire flow domain and time — see
Appendix B for details), guaranteeing that v, and v, are converging quite quickly. Place two tracer
particles at x,, one with initial velocity v;(xo,%), the other with velocity v,(xo,%). The velocity
fields will quickly entrain to the same field, however, at all later time the particles will be at
different positions. It is well established that even simple flows can produce chaotic particle paths.
In a turbulent flow it is virtually certain that the two particles paths will diverge exponentially.
The result in this section is about the convergence of particle velocity fields, not of individual
particles.

2.2.1. A related result
The above convergence theorem is similar to that of a special case considered by Meiburg et al.
(1999) for the existence of unique settling velocity for particles falling in a two-way coupled,
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unidirectional flow. Their example, somewhat restated for the present discussion, is as follows:
Consider the case of particles falling in still air under the action of gravity. For simplicity let
particle inertia, Stokes drag, and gravity be the only forces on the particle. The equation of
motion for the vertical velocity, v, of the particle can then be written as

dv 1

= (w— 18

C——(w-u), (18)
where w is the terminal velocity of the particle. Integrating the above equation twice we get the
following solution for the velocity v(¢) and the position y(¢) of the particle:

v(t) = voe T+ w(l —e™ %), (19)

(1) = yo +wt+ (v — w)(1 — ), (20)

where )y is the initial position of the particle and vy(yp) is the initial velocity of the particle, which
is here considered to be a function of the initial particle position. If we consider the particle ve-
locity to be a function of both y and ¢, the condition of uniqueness can be stated thus: v(y, #) must
be a single-valued function of y for all # > 0. Suppose the initial particle velocity is unique, i.e.,
vo() 1s a single-valued function of yy. For v(y, ) to become a multi-valued function of y, dv/dy
must become infinite at some y and ¢. Provided Ov/0y remains finite for all y and ¢, single-valu-
edness (or uniqueness) of the particle velocity field is guaranteed. Since, from Eq. (19)

v d ( ay>‘1 y
—=—(x) e, 21
oy dy \ 9 1)

the condition for single-valuedness becomes 0y/0y, > 0. From Eq. (20),
Wy gy, (22)

based on which Meiburg et al. (1999) obtained the condition for unique particle velocity field to be

dU()

—1<—n1
dyo

(23)
If the above condition is violated, then a multi-valued particle velocity field will develop in finite
time. To deal with such fields, one needs to consider the particle distribution function, f(x,v,?) in
phase space, whose evolution is controlled by a Boltzmann-like equation (Williams, 1985;
Meiburg et al., 1999).

The above condition is very similar to the more general condition derived in the previous
section. However, certain distinctions are warranted. Both the conditions (Eq. (23) and —1 < g,71)
guarantee that an initially single-valued particle velocity field will remain single-valued at all later
times. For the case considered in Section 2.2 a multi-valued v can arise only when |Vv| — oo; in
other words a multi-valued v entails o,,;, — —oo. The condition —1 < ¢,7 automatically sets a
finite lower bound on o,;,, thus guaranteeing a single-valued particle velocity field. In case of
particles falling in still air Meiburg et al. (1999) show that it suffices to set a bound on the initial
velocity gradient. In the more general case, however, a bound on the initial particle velocity field
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alone will not guarantee single-valuedness, owing to the possibility of a complex underlying fluid
velocity field.

Our result is about the asymptotic behavior of multi-valued particle fields (i.e., functions
f(x,v,t) which are non-zero at multiple values of v for at least some x). In the case of particles
settling in still air, their asymptotic behavior is quite simple: all particles approach their unique
terminal velocity exponentially fast, irrespective of the initial particle distribution, f(x,v,# = 0).
The analysis of Section 2.2 implies that even in the presence of complex fluid motion, provided
OminT Temains greater than —1 throughout a region of fluid over a range of time (in other words if
—1 < o,71), the particle velocity field estimated from Eq. (B.1) may be regarded as unique. We will
refer to such a field as an equilibrium particle velocity field, implying that it is asymptotically valid
after the decay of initial transients. Since a particle velocity field can depend only on initial
conditions and fluid quantities, an equilibrium field is determined solely by fluid quantities. In
particular, o, is determined by fluid quantities, which means that particle velocity fields remain
in equilibrium provided the fluid field is sufficiently well behaved. The equilibrium particle velocity
differs from the fluid velocity only at O(t) and therefore, to leading order, the condition for
equilibrium particle velocity can be approximately stated as —1 < ¢,7, where g, is the minimal
eigenvalue of the strain-rate tensor of the fluid velocity field. However, during the initial transient
the particle velocity field can differ arbitrarily from the background fluid velocity, and therefore
the approach to equilibrium can be guaranteed only by —1 < gy, t.

Three things can disrupt a particle field from approaching its equilibrium velocity. First, ozt
can become less than —1. When this happens the stable equilibrium velocity field becomes un-
stable, and the particles’ velocities begin to diverge exponentially from it. Second, particles can
collide with boundaries. In this case, particles suffer a sudden change in their velocities, when they
bounce off the surface. Depending on the nature (specular or diffuse) of reflection, the particle
distribution function f(x, v, #) can have a dominant bimodal or dispersed character in v. This non-
uniqueness in particle velocity is likely to dominate in the near-wall region, and particles then need
to re-adjust to the equilibrium velocity away from the boundaries. This situation is clearly
complicated by the change of the governing equation for particle motion in the presence of a
boundary, which, of course, is not represented in Eq. (B.1). Third, particles can collide with each
other. The notion of an equilibrium velocity is still useful: particles will return to equilibrium
provided the particle volume fraction is not so high that the mean time between collisions is less
than the particle response time. Again inter-particle collision is not accounted for in Eq. (B.1).

With the above caveats, particle velocities are unique for small 7. This significantly simplifies
the concept of an Eulerian method. It eliminates the need for averaging over an ensemble of
particle velocities. Nevertheless, the existence of a unique velocity field does not imply that the
expansion in Eq. (16) is accurate. To assess its accuracy we turn to numerics.

3. Numerical results
3.1. Description of the DNS

Direct numerical simulation (DNS) of a turbulent channel flow is performed in a channel with
dimensions 474 in the streamwise (x), 2/ in the wall-normal (y), and 47A/3 in the spanwise (z)
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direction. The Reynolds number based on half channel height and friction velocity is Re, = 180.
The DNS employs a fully de-aliased, pseudospectral algorithm on a grid of size 128 x 128 x 128.
The time-step in wall units is Ast = 0.054.

Motion of individual particles is governed by

dér dvt 1 Du”
W= G e e ) e
where the superscript ‘+’ indicates a non-dimensional variable in wall units.

In the simulation, the only forces influencing particle motion are Stokes drag and added mass.
Finite Reynolds number effects on particle drag are ignored. The particles neither modify the fluid
flow nor interact with each other. They rebound purely elastically if their centers come in contact
with the wall.

Eighteen types of particles are considered in this study: nine dense particles (f = 0) and nine
bubbles (f = 3). In each case, the particle response times are chosen to be powers of 10'/# ranging
from 107%* to 10%* (i.e., t¥ = 0.03,0.06,0.1,0.2,0.3,0.6, 1.0, 1.8,3.2). 300,000 particles of each
type are used. Particle statistics are obtained as a function of the inhomogeneous, wall-normal
direction, with averaging along the streamwise and spanwise directions. The large number of
particles allows for reasonably converged statistics to be obtained as a function of the wall-normal
direction.

The lower limit of t* = 0.03 was chosen because Eq. (24) becomes too stiff for lower t*. There
are methods that overcome this stiffness (Ling et al., 1998), but they are too analogous to using an
explicit expression for v to serve as a useful tool for comparison.

(24)

3.2. Static results

The particles are given initial velocities equal to the fluid’s. Particles are advanced in time for 54
wall units, which is 17 times the response time of the largest particle. At this point it may be
regarded that all particles have adjusted to the flow. We compare the actual particle velocities
(obtained by following particles using the Lagrangian equation of motion, Eq. (24)) to those

E T=1.0 . i =1.0

0.2f 0.2f

-0.2f ) -02f

(a) EO (b) EO

Fig. 3. Zeroth- vs. first-order errors for large t*(f = 0,y" = 20): (a) streamwise components; (b) wall-normal com-
ponents.



J. Ferry, S. Balachandar | International Journal of Multiphase Flow 27 (2001) 1199-1226 1209

predicted by Eq. (16). We define EO, E1, and E2 to be errors resulting from a zeroth, first-, and
second-order Eulerian approximation, respectively, i.c.,

EO=u" —v", (25)
Du”
El = <uJr —(1-p) oy r*) -V, (26)
Du* D*ut Du'
E2 = (uJr - (1-p) < D T — <m+ D Vu+>r+2>> —v'. (27)

The zeroth-order error, EO, is the error in approximating the particle velocity to be simply the
local fluid velocity. We expect the first-order correction in t* to bring about significant im-
provement for small particles, which should appear as measurable reduction in the first-order
error, E1 compared to E0. We also pursue one more term in the expansion to investigate its ability
to predict particle velocity more accurately.

Fig. 3 compares E1 to EO for the third-largest particle type (t* = 1), for the dense-particle case
(8 = 0). Fig. 3(a) shows a scatter plot of the streamwise component of E1 versus that of EO for all
particles within a narrow horizontal layer of fluid in the neighborhood of y* = 20. Fig. 3(b) shows
the corresponding scatter plot for the wall-normal component. Two observations can be made
from these plots. First, the E1 errors are smaller on average than EO errors. Although the dif-
ference does not appear to be appreciable, the first-order correction does seem to make a positive
contribution to accurate prediction of particle velocity. Second, while the first-order error, El,
appears to be evenly distributed with equal contribution from both positive and negative errors,
the zeroth-order error, E0Q exhibits a bias. The bias is negative for the streamwise component and
positive for wall-normal component, the bias being more apparent in the latter case. This suggests
that the first-order approximation better captures the average behavior of the particle motion in
both the streamwise and wall-normal directions. On the other hand, EO, by approximating the
particle velocity to be the same as local fluid velocity, ignores the tendency of the particles to lead

7" =0.03 . 1"=0.03
0.01F 0.01F
E1 0b s graliins e enonss At E1 0t gl pthaatnis a1
-0.01f -0.01
Lo v PSR T B L e
-0.01 [1) 0.01 -0.01 0 0.01
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Fig. 4. Zeroth- vs. first-order errors for small t*(f = 0,y" = 20): (a) streamwise components; (b) wall-normal com-
ponents.
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the fluid in their streamwise motion close to the wall. In the wall-normal direction, the zeroth-
order approximation similarly ignores the wallward migration of particles.

Fig. 4 makes the same comparisons as Fig. 3, but for the smallest particle type (z+ = 0.03). The
same features are evident, but the first-order errors are now much smaller than the zeroth-order
errors. A closer look at the scatter plots reveals that the bias observed in Fig. 3 for the zeroth-
order error persists for the smaller particles as well, although the magnitude of this bias is
somewhat diminished. Scatter plots for other values of T, at other y* locations, and for bubbles
(B = 3) are similar. From these scatter plots mean and root mean square (rms) errors can be
computed for £0 and E1. The results on mean and rms errors for the different particle types will be
shown below.

Fig. 5 shows the rms values of EO, E1, and E2 as a function of t* for the dense particles (f = 0)
in the buffer region at y™ = 20. As expected, the E1 errors decrease with ©* more rapidly than the
EOQ errors. The E2 errors fall off still more rapidly, but become smaller than E£1 only for very small
particles (t7 < 0.1). The behavior is similar for both the streamwise (Fig. 5(a)) and wall-normal
(Fig. 5(b)) components. The fact that the E2 errors are large than the E1 errors for larger particles
suggests one of two things. The power series for v may not be convergent for particles of larger
time constant. Or it may be that in the computation of E2 the requisite second derivatives both in
time and space are too sensitive for accurate numerical evaluation. In either case, the extra work
involved in using the second-order approximation is not worth even the paltry improvement for
small 77, let alone the worse results for large 7.

Fig. 6 shows the average values of E0, E1, and E2 at y* = 20. The first-order approximation
captures well the mean particle motion, while the zeroth-order approximation leads to significant
misprediction of the mean motion of the particles. In the buffer region at y™ = 20 the particles lead
the fluid, and therefore approximating the particle velocity to be the same as the local fluid ve-
locity underestimates the mean streamwise motion of the particles. The underestimation increases
with 7. In the case of wall-normal motion, particles tend to migrate toward the walls due to
turbophoresis (Reeks, 1983), thus in the bottom half of the channel the mean particle wall-normal
velocity is negative. Since the mean wall-normal velocity of the fluid is zero due to continuity, the
zeroth-order approximation (E0) results in significant positive error. The corresponding error in
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Fig. 5. Root mean square errors for ff = 0 particles at y™ = 20: (a) streamwise errors; (b) wall-normal errors.



J. Ferry, S. Balachandar | International Journal of Multiphase Flow 27 (2001) 1199-1226 1211

0.02}

-0.02f
-0.04f

-0.06 |

-0.08f

e il L e 1 " gl L el L1l
(a) 10 - 10° (b) 10" + 10°

Fig. 6. Mean errors for f = 0 particles at y™ = 20: (a) streamwise errors; (b) wall-normal errors.

the upper half of the channel will be negative. It is worth nothing that for t* < 0.4 the mean error
in both streamwise and wall-normal components is nearly zero for the first- and second-order
approximations. In both the streamwise and the wall-normal components, the ratio of the average
E1 error to the average EO error is smaller than the ratio of the rms E1 error to the rms EO error
for all t*. Likewise, the second-order approximation has a much better average behavior than rms
behavior. Because the average behavior is better than the rms behavior, we might hope that using
the first-order approximation for v will produce better results than using the zeroth-order ap-
proximation, even for " = 3, despite the fact that the rms E0 and E1 errors have the same
magnitude. This will be explored in Section 3.3.

Fig. 7 shows streamwise rms values of £0, E1, and E2 at the channel midplane (y* = 180) and in
the near-wall region (y" = 2). At y* = 180 the E1 error is relatively small at t* = 3, but the £2
error is extremely large. At y* = 2, both the E1 and E2 errors behave well. The most important
result, that the first-order approximation is a significant improvement over the zeroth-order ap-
proximation, holds throughout the channel. Similar observations can be made about the behavior
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Fig. 7. Streamwise rms errors for f = 0 particles at other y*: (a) near the midplane; (b) near the wall.
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of the mean errors (not shown here). Fig. 8 shows the rms error for the bubble case (f = 3). The
plots are quite similar to those in Fig. 5. In general, there is no significant qualitative difference
between the f =0 and = 3 cases, though the mean error plots are of opposite sign since the
mean behavior of bubbles is opposite to that of dense particles.

3.3. Dynamic results

Section 3.2 compared the actual velocities of particles (computed by the Lagrangian method)
with the velocities obtained by several approximations to the Eulerial field v(x, ). The comparison
was performed at an instant in time so as to assess the accuracy of the Eulerian approximation at
various orders. Although the errors are generally small for the first- and higher-order approxi-
mations, it needs to be determined whether the errors will accumulate over time, eventually giving
rise to large errors. If we compare the path of an individual particle evolved using the actual
Lagrangian velocity with that of an identical particle (with an identical initial condition) using an
approximate Eulerian velocity, then these paths will always diverge in a turbulent flow. Small
differences in the particle velocity are guaranteed to make the paths diverge exponentially fast. In
fact, even with the Lagrangian approach the particle paths will diverge if two different interpo-
lation or integration schemes are used (Balachandar and Maxey, 1989). But it is not the history of
individual particles that is of interest in an Eulerian method. Therefore, it is more meaningful to
look at whether particles evolved using an approximate Eulerian velocity exhibit the same sta-
tistical behavior as particles evolved using the exact velocity. Druzhinin and Elghobashi (1998)
performed a similar experiment in the context of micro-bubbles in a Taylor—Green vortex. The
Eulerian approximation was observed to give accurate predictions of bubble concentration over
short times, but over long times there was a slowly growing disparity between the two approaches.
However, this accumulation of error may be due to the steady, laminar nature of the Taylor—
Green vortex.

In a turbulent flow it may be expected that the errors do not accumulate so dramatically. Errors
are likely to build up only as long as a particle stays correlated with an eddy, after which the
particle sees new flow conditions. For example, in the limit of the zeroth-order approximation the
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Fig. 8. Root mean square errors for f§ = 3 particles (bubbles) at y™ = 20: (a) streamwise errors; (b) wall-normal errors.
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long-time asymptotic error is simply the difference between particle and fluid statistics (provided
particles stay uniformly distributed). Yeung and Pope (1989), Squires and Eaton (1991) and
Elghobashi and Truesdell (1992) have examined the difference between true particle (Lagrangian)
and fluid statistics in isotropic turbulence. The error in higher-order Eulerian approximations will
be bounded by this difference. Thus there is reason to believe that at all orders of Eulerian ap-
proximation to particle velocity, any error in statistics will quickly reach its asymptotic value on
an eddy-particle correlation time-scale.

The results of Section 3.2 were evaluated at the time-instant t© = 54. In order to evaluate the
ability of the Eulerian approximation to track particle statistics accurately over time, two sets of
statistics were obtained by integrating the particle motion further for another 1000 wall units. The
first set of particles were evolved in time using the exact particle velocity given by Eq. (24). The
statistics obtained from this set will be termed exact. The second set of particles, whose initial
positions coincide with those of the first set, were evolved using the first-order Eulerian approxi-
mation vi = u* — (1 — B)r"Du’/Dr*. Statistics obtained from this set of particles will be termed
approximate. Where appropriate, corresponding fluid statistics averaged over the fluid volume will
also be provided — these would be the zeroth-order approximation to particle statistics as well. For
each type of particle (specified by a value of § and of ) we form averages and probability density
functions (PDFs) based on an ensemble consisting of all particles within some thin horizontal slab
of fluid (e.g., near y* = 20) over a time interval of 380 wall units. We use the notation (g)(y*) to
denote the average of the quantity ¢ over all particles within the thin horizontal slab of fluid
centered around y*. All the statistics on the discrepancies between the exact and approximate
methods have converged: they are essentially the same at other time-instants as well.

The first quantity we examine is Tr(G*?), where G* = Vu*. This quantity can also be expressed
as wuj, or IST|* — |Q7|%, the difference between the magnitudes of the strain and rotational
components of the gradient tensor. Using an expansion like that in Eq. (16), Maxey (1987)
showed that dense particles tend to congregate where Tr(G'?) is large, and bubbles tend to
congregate where Tr(G™?) is small. Zhou et al. (1998) extended this idea to get an approximate
formula for the particle number density as a function of Tr(G*?). Thus Tr(G*?) is a good quantity
to characterize preferential accumulation of particles and bubbles. Fig. 9 compares the average
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Fig. 9. Mean values of Tr(G™): (a) at y* = 20; (b) at y* = 180.
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value of Tr(G™?) for “exact” and “approximate” particles in the buffer region (y* = 20) and at
the channel midplane (y" = 180). The preferential accumulation of dense particles (f = 0) in
regions of strain, and bubbles (f = 3) in regions of vorticity, is clearly evident in the respective
positive and negative mean values of Tr(G*z). The discrepancy between exact and approximate
statistics is significant in the buffer region only for t* > 1. Near the channel midplane the first-
order Eulerian approximation appears to be accurate even for the largest particle and bubble
types considered (1™ = 3). The PDFs of Tr(G"?) at y* = 20 for = = 3 are shown in Fig. 10. By
comparing the exact and the first-order approximate PDFs to the PDF for the fluid, we see clearly
the preference of dense particles for positive Tr(G*?), and of bubbles for negative Tr(G"?). De-
spite the relatively large departures seen in Fig. 9, the PDFs of the exact and approximate particles
do not disagree much qualitatively even for this worst-case scenario (y* = 20,7+ = 3). They agree
with each other much more closely than they do with the PDF for the fluid. This indicates that the
dynamic behavior of the approximation is much better than the static behavior: Figs. 5 and 8
suggest that for t+ = 3 the first-order approximation to particle velocity is just as bad as zeroth-
order approximation. While this is true at an instant in time, Fig. 10 indicates that the first-order
approximation accounts for preferential accumulation of particles and bubbles to sufficient ac-
curacy, resulting in an accurate representation of the conditional statistics with respect to
Tr(G™?). For the less extreme cases (i.e., smaller t*), the exact and approximate particle PDFs are
virtually identical.

One might argue that the behavior for Tr(G*?) is somehow built in, since taking the divergence
of the approximate particle velocity vi =u" — (1 — f)"Du’ /Dt yields Vv = —(1 — p)
' Tr(G"?). Indeed, with = 0, this is the equation that Maxey (1987) used to argue that Tr(G"?)
determines the preferential concentration of particles. Zhou et al. (1996, 1999) have defined local
swirling strength, A', to be a good discriminator for identifying vortices. Swirling strength is
defined as the magnitude of imaginary part of the complex conjugate eigenvalues of Vu' (swirling
strength is 0 if all the eigenvalues are real). Ferry and Balachandar (1999) have shown that 4 is a
more sensitive predictor of particle concentration than Tr(G*?) is. Fig. 11 compares exact and
approximate statistics using A instead of Tr(G*?), and the plots indicate the same thing as the
plots of Tr(G"?). There is a discrepancy only for the largest response time considered (t* = 3).
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Fig. 10. PDFs of Tr(G™) for t* = 3 at y* = 20: (a) for = 0; (b) for f = 3.
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The first-order approximation tends to overpredict the preferential concentration of both the
particles and the bubbles. Nevertheless, even for the largest t* the PDFs look qualitatively similar
(see Fig. 11(b)) when compared to the PDF of the fluid. The discrepancy in (1') is due to the first-
order approximation’s exaggeration of the abhorrence of particles toward regions of large .
However, the agreement of the PDFs is surprisingly good especially when compared to the static
result for t* = 3 presented in Fig. 5.

Fig. 12 examines the statistics u; — v}, the streamwise relative velocity between fluid and
particle. For the larger particles and bubbles there is a tendency for the first-order approximation
to underestimate the relative velocity. To leading order, the relative velocity can be expressed in
terms of local fluid velocity derivative as (1 — )r"Du"/Dt". The mean streamwise relative ve-
locity is primarily induced by turbophoresis, and the local fluid velocity derivatives are unable to
fully account for the net flux of particles from adjacent faster- or slower-moving layers. Note that
the one case that does not exhibit much error is that of dense particles (f = 0) near the channel
midplane (y* = 180), where there is no net flux of particles on average. Figs. 13 and 14 show
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Fig. 12. Mean values of u] — v{: (a) at y* = 20; (b) at y© = 180.
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PDFs of u{ — v{ for both the dense particles and bubbles. In Fig. 13(a) it is clear that the un-
derprediction of streamwise relative velocity is due to the stronger peak in the PDF corresponding
to zero relative velocity and the corresponding under-representation of particles moving faster
than the local flow. The agreement between the PDFs at the channel midplane in Fig. 14 is good.

The statistics of u; — v5, the wall-normal relative velocity, in the buffer region is shown in Fig.
15. Here the trend is somewhat opposite to that observed in Fig. 12(a): the average wall-normal
relative velocity based on the first-order approximation exceeds the exact value. Nevertheless, the
corresponding PDFs for the largest particle type in Fig. 16 show good agreement. In comparison,
the PDF of the zeroth-order Eulerian approximation is a Dirac delta function corresponding to
identically zero relative velocity. Given this extreme, the inclusion of the first-order correction can
be seen to bring significant improvement. The cumulative effect of wall-normal migration can be
felt in particle number density. Fig. 15(b) shows the normalized number density of dense particles
and bubbles at y* = 20 as a function of particle response time. Here normalization is with respect
to the initial uniform distribution of particles across the channel. An increase in the concentration
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Fig. 14. PDFs of uf — vf for t¥ =3 at y* = 180: (a) for § = 0; (b) for = 3.
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of particles and a strong depletion of bubbles in the buffer region are evident. It is also clear that
the first-order Eulerian approximation captures this wall-normal migration of particles and
bubbles quite well.

Finally we will address the question of how well particles of different sizes satisfy the condition
for uniqueness obtained in Section 2.2 in the present case of turbulent channel flow. In Section 2.2
the condition for uniqueness is expressed in terms of oy, the minimal eigenvalue of
(Vv + (Vv)"). Since the exact particle velocity field v(x, ¢) is not known, we will instead consider
., the minimal eigenvalue of %(Vu + (Vu)T). It follows from Eq. (16) that o, = o, + O(7), so we
obtain only approximate information about uniqueness. The average of ¢,, measured in wall
units, for particles in the buffer region (y™ = 20) is presented in Fig. 17. Since the bubbles prefer
regions of low strain, and the particles prefer high strain, it is no surprise that bubble statistics
yield a smaller value of |(s;)| than the fluid, and the particle statistics yield a larger value. The
criterion for uniqueness can be approximately stated as —1 < t*¢ /. Thus, as far as the mean value
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Fig. 16. PDFs of u; —v; for ™ = 3 at y* = 20: (a) for = 0; (b) for f = 3.



1218 J. Ferry, S. Balachandar | International Journal of Multiphase Flow 27 (2001) 1199-1226

i c
-0.14 L 2
L | IS
o
I 6 ®
-0.16 3
Ao a
6 °-0.18 o
. L
0.2
L B = 0
-0.22f approx
L0 - ..,.‘.lo L A
g
@) 10 - 10 (b) o

Fig. 17. ¢} at y* = 20: (a) mean; (b) PDF for % = 3.

of o is concerned, all particle and bubble types satisfy the condition for unique particle velocity
field.

We do expect the criterion for uniqueness to be violated at least some of the time as the particles
and bubbles get larger. Fig. 17(b) shows the PDF of o for the largest particle and bubble types
(tt = 3). Also shown is the corresponding fluid PDF, which exhibits an intermediate behavior.
The preference of particles for high strain regions is reflected in the smaller peak and the long
negative tail. As a result, during a significant fraction of their trajectories dense particles expe-
rience a compressive strain of magnitude greater than 1/3. This would suggest that a unique
particle velocity field is not quite appropriate for dense particles of t* = 3. On the other hand,
bubbles avoid regions of high strain, resulting in a sharply peaked PDF with a weak negative tail.
The criterion for uniqueness therefore seems to be reasonably well satisfied for the case of bubbles
of t* = 3. The PDFs do not vary dramatically as t* is varied, either for the dense particles or the
bubbles: as 7" is decreased, the PDFs approach the fluid PDF. So it can be inferred that a unique
velocity field is well justified for dense particles of 7" < 1/0.7 and for bubbles of ™ < 1/0.4. The
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Fig. 18. ¢} at y* = 180: (a) mean; (b) PDF for v+ = 3.
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corresponding (¢;") and PDFs at the channel midplane are given in Fig. 18. As could be expected
the compressive straln has a smaller magnitude at the channel midplane, and a unique velocity
field appears to be justified for both dense particles and bubbles of t* < 8.

The results of this section justify the use of the fast Eularian method for small z. Although the
comparisons are performed on a dataset of particles evolved by the Lagrangian method, this is
equivalent to sampling data at a certain set of positions from an Eulerian method (or, more
precisely, from a generalized Eulerian method that evolves not just a single velocity field, but
rather a velocity distribution field f(x, v, ¢)). In the limit of an infinite ensemble of particles, there
would be no distinction between statistics gathered by Lagrangian and Eulerian methods.
Therefore, sampling at a finite number of particle positions can only exaggerate the difference
between the standard and fast Eulerian methods.

4. Physical consequences
4.1. Particle distribution

The numerical results suggest that the first- (and higher-) order terms in the Eulerian ap-
proximation to particle velocity do not just improve the accuracy of prediction (over the zeroth-
order), but incorporate important physics, such as preferential accumulation and turbophoresis,
which are otherwise left unaccounted for.

From Eq. (16) the divergence of the particle velocity field can be expressed as

V.v=—(1-p)Tr(G*)t + O(z?), (28)

provided V-g = 0. As seen earlier, the leading-order term accounts for the preferential accu-
mulation of dense particles in regions of high strain and bubbles in regions of high vorticity.
Simply approximating the particle velocity as equal to the local fluid velocity completely ignores
the preferential accumulation of particles and bubbles and the important subsequent effects
arising from this behavior. Figs. 9 and 10 show that the method captures this preferential accu-
mulation in practice as well as theory.

Fig. 6 shows that the first-order term in the Eulerian approximation of v captures the average
wallward motion quite well. Again, this is predicted by theory: if Eq. (16) is averaged over hor-
izontal planes, then, assuming V - g and g, are zero, we find

7= (1 - ﬁ)((—%u?)wr (26?; 13 +6622 —MzTI'(G2)>‘L'2) +0O(7?), (29)

where we make use of the fact that %; = 0 and the horizontal directions are periodic. In the above,
the notation § means an average over the x — z plane, which is different from the previously
defined (g). (¢) is the average over all the particles on a horizontal plane and therefore may
be thought of as a Favre average: (q) = ¢g/¢, where the concentration ¢ is the weighting that
accounts for the preferential distribution of particles over the plane.

Clearly at the zeroth-order approximation there is no inertial migration of particles or bubbles
toward or away from the walls. The O(z) approximation of v, gives the same expression for the
turbophoretic velocity as obtained by Camparaloni et al. (1975) and Reeks (1983). At this level of
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approximation it is the wall-normal gradient in the rms wall-normal turbulent fluctuating fluid
velocity that drives the inertial migration — so the effect is termed turbophoresis. The above
equation allows for the identification of higher-order effects as well. The second-order correction
is due to: (a) the time-rate of change of the first-order term; (b) the curvature of u,’s mean
skewness; and (c) the flux of the velocity field’s divergence (V-v~ (1 — )cTr(G?)). Physical
interpretations of these second-order terms are harder to obtain. However, it is clear from Fig.
6(b) that the second-order corrections are not important in accounting for the mean wall-normal
motion of particles for t+ < 1.

4.2. Two-way coupled equations

A simple set of two-way coupled equations can be obtained in the limit when both the con-
tinuous and dispersed phases can be represented by unique velocity fields as u(x,7) and v(x, 7).
There is no volume transfer between the two phases, so we write volume balance laws for each
separately. Eq. (16) implicitly expresses the momentum transfer between the phases, so we need to
write only the balance for the total momentum of the system. We express these balances within an
arbitrary control volume V with boundary 0V:

%/ch—i—/ i - (cv)ds =0, (30)
%/V(l—c)dV+/aVﬁ-((1—c)u)dS:0, (31)

0 .
5/ [cppv—l—(l—c)pfu]dV—l—/ i [cp,wv+ (1 —c¢)ppuu]dS
V

o
—pf/FdV—i-/ [cp, + (1 —c)p;|gdV, (32)
Vv Vv

where n is the unit surface normal, p; and p, are the densities of the continuous and dispersed
phases, and c(x, ) is the concentration of the dispersed phase. The two terms on the right-hand
side of the last equation represent the surface and volumetric forces on the volume of fluid. The
pressure and viscous forces represented by F should be modified for the two-way interaction. For
example, Einstein’s viscosity law gives the following form for F:

F=-Vp+ <1 —i-;c) vAu, (33)

which holds for ¢ < 0.1. However, we will ignore this O(c) modification to the viscosity. For
further discussion on constitutive two-phase modeling (see Zhang and Prosperetti (1997) or Drew
and Passman (1999)).

The first two of the above equations can be combined to yield the following continuity equation
for the continuous phase:

V-u:%—i—V-(cu). (34)
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In the limit of small volumetric loading (¢ < 1), the fluid continuity equation is usually simplified
to the standard incompressibility condition, V - u = 0 The conservation equations of volume and
mass also yield the following equation for the concentration field
0

a—f+v (ev) = 0. (35)
We are now ready to exploit the explicit expansion of particle velocity in terms of the fluid ve-
locity. If the expansion in Eq. (16) is substituted into Egs. (32) and (35), then standard simpli-
fications result in the following closed system of mass, momentum and concentration balances
(valid in the limit of small c¢):

V-u=0, (36)
(1+(,0—1)c)<%;—g) = —Vp+vAu, (37)
Do (o2 4) ”

The effect on the momentum equation is to introduce an effective density, p;(1 4+ (p — 1)c), in
agreement with the study of dusty gases (Saffman, 1962; Marble, 1970), Although ¢ is small, pc
may be significant in the dense-particle case, i.e., though volumetric loading is small, mass loading
is not. The fact that the chief effect of the particle phase on the momentum equation is simply to
modify the effective fluid density can be interpreted as a manifestation of the particles being in
equilibrium. Loosely speaking, the particles’ velocity is different from the fluid’s, but their
acceleration is the same.

We ignore higher-order terms both in ¢ and 7 in the momentum equation. To obtain more
accurate equations, a more sophisticated analysis is required, taking into account the effect of the
influence of surrounding particles on a particle’s velocity. The effect modifies the velocity of the
particle by O(c!'/?) (Happel and Brenner, 1965), and is therefore more important to account for
than the neglected O(c) terms and, typically, than the O(z) terms as well.

Finally, there is no mechanism to prevent a buildup toward infinite concentration. This has
been observed to cause problems in numerical simulations of the above set of equations (Dru-
zhinin and Elghobashi, 1998). The physical mechanism which prevents ¢ — oo is particle—particle
collision, which has been completely ignored in the above formulation. The importance of col-
lision in significantly altering the concentration field has recently been addressed by Vance et al.
(1999). Inter-particle collision is a hard phenomenon to model. However, for small T we note that
the velocity difference between particles of different response times is always proportional to
Du/Dt¢ — g. In the frame moving with the fluid velocity, the particles are all moving parallel to
each other, so there is some hope of a simple theory. It is not a trivial task however. As was
mentioned in Section 2.2, particle collisions result in perturbation away from equilibrium, hence
non-equilibrium velocities exist until equilibrium is again established. Also, as particles approach
each other, their equations of motion must be modified to account for the effect of local, particle-
induced fluid disturbances.
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5. Conclusion

For small particle response time 7, one hopes to get away with simply solving for the mixture
with a uniform modified density, which takes into account the presence of particles, hence
avoiding any detailed coupling between the two phases. However, if 7 is large enough that par-
ticles tend to either preferentially concentrate or turbophoretically migrate, then the uniform
modified density approach for the mixture will fail. One is then forced to treat the concentration ¢
as a field variable and to track the evolution of ¢(x, 7). The particle velocity field v must be treated
as a field variable as well, else inhomogeneities in ¢ cannot arise. This gives rise to the standard
Eulerian approach for particles, where one computes the evolution of v(x, 7) and ¢(x, ¢) in addition
to u(x, ). However, for small 7, v(x,#) does not differ significantly from the fluid velocity u(x, ¢),
and the difference is significant only insofar as it influences the concentration field. Hence, for
small 7 it is desirable not to compute the particle velocity field explicitly.

The natural thing to do in this situation is to express v as an expansion in u. Such an expansion
has previously been considered by Maxey (1987) and Druzhinin (1995). The first question ad-
dressed in this paper is under what conditions a unique particle velocity field can be assumed to
exist. For sufficiently large 7, a unique field representation for particle velocity is inappropriate as
particles tend to remember their initial conditions for a very long time. On the other hand, for
very small particles which move almost with the fluid an Eulerian representation seems appro-
priate. In Section 2.2 we derived a rigorous upper bound for the particle response time © below
which a unique particle velocity field is appropriate. According to this condition, provided the
particle time-scale (t) normalized by fluid time-scale (as expressed by the inverse of the magnitude
of the maximally compressive strain) is less than 1, a unique particle velocity field can be defined.
Only in this limit is an Eulerian approach appropriate. We extend the work of Maxey (1987) and
Druzhinin (1995) to obtain an expansion for particle velocity in terms of u and its spatial and
temporal gradients, including the effects of added mass, Basset history and Saffman lift terms.

Existence of a unique particle velocity field does not guarantee that the expansion for v in terms
of u is accurate. In Section 3.2 we considered a database obtained form DNS of particles in
turbulent channel flow, and compared the exact velocity of particles (computed by Lagrangian
means) to the approximate velocity based on the local fluid quantities. It was observed that the
first-order approximation was quite accurate for small T and provides significant improvement
over the zeroth-order approximation (i.e., that the particles follow the local fluid element). The
second-order approximation does not yield further improvement consistently over the entire
range of 7 considered. Thus from a practical point of view, the first-order expansion for particle
velocity seems adequate.

In addition to the static tests, in which the exact particle velocity is compared to the zeroth-,
first-, and second-order Eulerian approximations at an instant in time, dynamic tests were also
performed. Although the first-order approximation was observed to be quite accurate for small 7,
there remains the possibility that the small errors may accumulate over time in such a way that the
long-term behavior of particle ensembles evolved with the approximate velocity differs from those
evolved with the exact velocity. This issue was addressed in Section 3.3, which compares statistics
collected over time from two sets of initially identical particles: one evolved with the exact ve-
locity, and the other with the first-order approximate velocity. It was observed that the first-order
approximation was able to reproduce all the important statistics quite accurately for particles of
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time-scale less than about 1 (in wall units). Particles evolved using the first-order approximate
velocity are observed to concentrate in regions of flow vorticity and high strain-rate in the same
manner as the exact particles. Analogous results hold for bubbles: the approximately evolved
bubbles concentrate in regions of high vorticity just as the exact bubbles do.

The first-order Eulerian expansion has several other nice properties which are otherwise left
unaccounted for. The first-order term accurately accounts for turbophoretic migration of particles
toward the channel walls (and of bubbles away from the walls). It also predicts the faster-than-
fluid streamwise motion of particles near the walls and the streamwise lag of the particles near the
channel midplane. The explicit expression for the particle velocity field in terms of the local fluid
quantities can be exploited to obtain a consistent two-way coupled formulation. A preliminary
investigation of this issue has been addressed in Section 4.2. It is observed that the leading-order
effect of two-way coupling on the momentum equation of the continuous phase is to modify the
local density, just as in dusty gas formulations. In this sense, the fast Eulerian method forms a
natural bridge between the uniform modified density method and the standard Eulerian approach.

Finally, we have only treated monodisperse ensembles of particles. The method becomes even
more efficient (relative to the standard Eulerian) for the polydisperse case. For each species of
particle tracked, the standard method requires four scalar fields; the fast method requires one.
Furthermore, the computation of the correction to u need only be done for one particle species.
The correction has the form —(1 — f)t(Du/Dz — g), so once the term Du/Dr¢ — g is computed,
velocities for all species of particles may be obtained simply by scaling the correction factor based
on the species’ response times (7) and density factors (f3).
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Appendix A

The semiderivative operator, d'/? /dt'/2, is useful for expressing the Basset history term in Eq.
(3) (Tatom, 1988; Coimbra and Rangel, 1998). It is defined as

d’y _d / f6) g S [ S)
de'/2 - dt Ji, \/n(t—s) Valt—1)  Jiy /alt—s)
(Oldham and Spanier, 1974). Note that the second line automatically provides the constant term

which was shown to be necessary by Reeks and McKee (1984).
A point of caution about the semiderivative operator: its composition law is

d1/2 dl/Zf- df C
dtl/2 dtl/Z :E (t_t0)3/27

ds. (A1)

(A.2)
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where C is some constant. If it is desired that (d'/?/d¢'/2)d"/*f /d¢'/* = df /dt, the lower limit #
should be set to —oo.

Appendix B

We now prove the convergence theorem stated in Section 2.2. This will provide a rigorous
condition for the existence of a unique particle velocity filed (after some initial transient), based on
the ratio of particle time-scale to a certain fluid time-scale.

Consider the following equation for the Eulerian velocity field:

O A (1 P (B.1)

This is simply Eq. (4) without the term +/ /7% [u — v|]. Hence the following analysis accounts for
effects such as gravity and added mass, but ignores the Saffman lift and Basset history terms.

Let vi(x,7) and v,(x,?) be two different velocity fields that satisfy Eq. (B.1). Their difference
0 = v| — Vv, satisfies

00 1

Now let &(¢) be the trajectory of a tracer particle following the velocity field v;. Then along this
trajectory,

do 1
4, = A% where A=—T+ (Vvy)". (B.3)
Here, I is the identity tensor. Taking the dot product this equation with ¢ yields
d

1
7 (5 ’5’2) =—0"A0 = —0"BS, where
t ; oo (B.4)
—_ T = — — T
B_Z(A—i—A) TI+2<Vv2+(Vv2)>.

The symmetric tensor B may be written as B = /W, W] + A,WaW) + A;W3w1, where 4; are the ei-
genvalues of B, and W, are the corresponding orthonormal set of eigenvectors. The following
bound on the time evolution of the difference between the two different particle velocity fields, v,
and v,, can then be established as:

d - . .
- (yaf) - —2(A1]w1 O] 4 oW - O] - Aa|Ws - 5;)
< — 2/1min|6|2, and so (B.5)
d 2 1 2
—(|é < -2( - min t/ 7t/ 0 )
G090 < =2+ ama(e0).0) )1
where Ay, is the smallest eigenvalue of B, and op,(X,7) is the smallest eigenvalue of

Vv, + (Vv2)")(x,7), which is likely to be negative, corresponding to the most compressive strain
of the particle velocity field. Integrating the above inequality from #, to ¢ + ¢, yields
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un(§(0).) 0 ) )

1+t

10(¢ + t0) > < |8(to)|” exp <—2(£+/t (B.6)
0 B.

<ot exp = 20( 1+ (@l ) ).

where Gmin(E(2); 1, ¢) 1s the smallest value of g, along the entire trajectory from ¢, to ¢ + #. The
final result on the rate of convergence (or divergence) of the two different velocity fields can now
be obtained. For this purpose we define the maximal difference between v, and v, to be

E(f) = sup |vi(x,1) — vo(x,0)[, (B.7)

XER| (1)

where R(¢) is a material volume for particle velocity field. If we now define the “maximally
compressive strain”, g, of the particle velocity field over the volume, R (¢) for to <7 <t -+t as

oy = inf 6min(X;00,1) = inf omn(X, 1), (B.8)
XER| (ty) x€R (ty)
1o <t <ttty

then we have the global bound

E(t+t) < exp ( - 2t<% + 02>>E(t0). (B.9)

The inequality, min(E(7), ) = Gmin(E(%); t0,t) = 02, implied in the above global bound on error
may be rather drastic; a tighter bound can be obtained if need be. In any case, provided —1 < 7,7
a unique particle velocity filed can be considered to exist after transients have decayed.
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